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solve the Hubbard Model!!

Cooper instability??
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A Critique of Two Metals

R. B. Laughlin
Departrment of Physics

Stanford University
Stanford, California 94305

idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes

A Critique of “A Critique of Two Metals”

Philip W. Anderson and G. Baskaran

Joseph Henry Laboratories of Physics

Princeton University, Princeton, NJ 08544

The fundamental argument is presented in the second paragraph: “Ten years of work
by some of the best minds in theoretical physics have failed to produce any formal demon-
stration”...of the Mott insulating state. The statement would be ludicrous if it were not
so influential. The proviso “at zero temperature” is added, because of course most Mott

concern. It is the tragedy of Mott that although he almost certainly won his Nobel prize

gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the

interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

for the Mott insulator, Slater, who couldn’t think clearly about finite temperature, won the

publicity battle.
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No Mott Problem




gap with no symmetry

Laughlin’s objection: breaking not demonstrated!!
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DetReG(w = 0, p)



counting particles

‘7 Q8

6
o® O o
e
2@

@]

is there a more efficient way?




Luttinger counting theorem
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Zero-crossing i L
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counting poles (gp)




How do zeros obtain?

= below gap+above gap| [= 0

DetReG(k,w =0) =0

(single band)

strongly correlated gapped systems
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Symmetry Breaking
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ls the Hubbard model necessary?
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No!

Minimal model
for Mottness?

18



Fermi

liquids
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DetM = +1 —> Zy = O(4) = SO(4)
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Surface

H =

'

Npt — _nPT} 7 at Fermi
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How to destroy Fermi liquids?

H = Z — €F) Npo + Unprnigy
Odd scaling dimension
under Z> nprnpy] = —2
relevant
New fixed point! interaction
Hatsugai-Kohmoto Hubbard
model not

necessary!




Hatsugai-Kohmoto Model (1992)
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non-local but correlations

are local
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General HK Model

relevant
Z (& (npp + Ny ) + perturbation
k
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Solvable Mott transition
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lower Hubbard band upper Hubbard band




Hubbard band operators
T
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Mott transition: composite excitations
AL =U—-4dt=U —-W

C U<W,{n)=1

insulator \ metal
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Why NFL?

HK
Mottness

CrCiy|G) <><> {

[11G), cf, |G) =it |G), GLy |G

FL

x=1-—(n)




Fermi

liquids

Unan;@

MI

L\

2
FL

Hubbard

not
necessary
(universality
class)

V(p17 P2, P3, p4)




50

50

50

50

50

50

50

n=1.0
Huk ~ Hiubb

A(k = (m, 0), w)
Ux=12 | ' | Unw=0
Unk = 10 ' ' " Upy, =2
1 1 1 1 1
UHKI= 8 l I I UHubl=4
Uk =6 ' ' | Unpup=6
1 1 1 1 1
Upk = 4 ' ' | Unw=8
Upk = 2 ' ' " Upwp=10
e | I Y |
Upk = 0 ' ' Upiup = 12
II 1 II
-10 -5 0 5 10
w/t

50

50

50

50

50

50

50

A(k = (m, 0), w)
Ui=12 | | " | Uk =0
| | | | |
| | | | |
Unk =10 Utup = 2
| | | | |
Uk =8 Unup =4
1 1 1 || | 11
| | | | |
Uk =16 UHub = 6
| | | | | I |
| | | | |
Uk =4 UHup = 8
1 1 1 | 1 | I 1
| | | | |
UHK == 2 UHub = 10
| | | | |
UHK = O l/ UHub - 12
L ‘ s 1 1 II '
-5 0 5 10 15




what does the HK model leave out??

Hy, Hy| # 0

dynamical spectral weight transfer
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Superconductivity?




Cooper Instability
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Cooper Instability
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Pair Susceptibility

: 1 g W T
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variational wave function

Ynos) = | [(ur + b} |0)
pcs) = | [ (uf +oRbpb, + wevr(b), + 0" ,))[0)
k>0
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three variational parameters

2|+ |yl + 2] =

gap equation
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gap/T_c ratio
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non-BCS superconductivity




Bogoliubov excitations

Yio |¥BCS) = 0

PYHons excitations
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Excitation spectrum
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superconductivity affects both bands!
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can we explain the color change?

REPORT

Superconductivity-Induced Transfer of In-Plane Spectral
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condensation energy

Optical data are reported on a spectral weight transfer over a broad frequency
range of Bi,Sr,CaCu,Og , 5, when this material became superconducting. Using
spectroscopic ellipsometry, we observed the removal of a small amount of
spectral weight in a broad frequency band from 10 cm ™~ to at least 2 X 10*
cm™ ', due to the onset of superconductivity. We observed a blue shift of the

ab-plane plasma frequency when the material became superconducting, indi-

cating that the spectral weight was transferred to the infrared range. Our

observations are in agreement with models in which superconductivity is ac-
companied by an increased charge carrier spectral weight. The measured spec-

tral weight transfer is large enough to account for the condensation energy in

these compounds.

UV-IR mixing







why?

H = Huyk + H,

[HHKa Hp] # 0

dynamical
spectral weight
transfer




is this the
general
mechanism
of the color
change?




Superfluid Density

Mottness-induced suppression
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HK and EFL?

other hand, we have tween two regions with different n(k) carries a Fermi sur-

face with anomaly coefficient m given by the difference
An. In a Fermi gas, n(k) has a natural interpretation: it
2mgq

(27r)2VF =p (mod2). (64) An = m = 2

The extra factor of two takes into account the two pos-
sible spin values, and agrees (setting m = 1) with the ?
usual result for spinful Fermi liquids. (Thus, if we had
defined m with respect to the total charge as we did in

Section VI, we would have found m = 2 for a spinful ®
Fermi liquid/EFL).



