Dynamic Quantum Matter

Dynamic 2: Dynamics in Dirac materials

• Dirac Materials

• Dynamics in Dirac Materials 1: Dynamic Exciton instability in DM

Dynamics in Dirac materials
2: Axial Magnetoelectric
Effect in DM

Conclusion

• Universal properties

- Scaling of DoS...
- Nontrivial topology
 - Surface states, anomaly, transport...
- Emergent gauge fields and geometry

bosonic analogues...

Wehling, Black-Schaffer, and Balatsky, Adv. Phys. 63, 1 (2014)

Dirac equation

• Dirac equation (1928)

$$\begin{aligned} (i\gamma^{\mu}\partial_{\mu} - m)\psi &= 0 \\ \gamma^{\mu} &= \begin{bmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{bmatrix}, \ \psi &= \begin{bmatrix} \psi_{L} \\ \psi_{R} \end{bmatrix} \\ \sigma^{\mu} &= (I, \boldsymbol{\sigma}), \ \bar{\sigma}^{\mu} &= (I, -\boldsymbol{\sigma}) \\ H_{\text{Dirac}} &= \begin{bmatrix} \boldsymbol{\sigma} \cdot \mathbf{k} & m \\ m & -\boldsymbol{\sigma} \cdot \mathbf{k} \end{bmatrix} \end{aligned}$$

What is a Dirac material?

Dirac materials (DMs): low-energy fermionic excitations are described by a Dirac Hamiltonian

Dirac equation:
$$i\hbar \frac{\partial}{\partial t}\psi = (\underline{c}\boldsymbol{\alpha} \cdot \mathbf{p} + \beta mc^2)\psi$$

 $\alpha = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}$ $\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Dirac Hamiltonian: $H_D = v_F \boldsymbol{\sigma} \cdot \boldsymbol{p}$
in condensed matter $v_F \approx c/300$

 \mathbf{k}_{i}

T.O. Wehling, A.M. Black-Schaffer, A.V. Balatsky, Advances in Physics (2014)

Dynamics examples:

Floquet approach

Gedik grp Nature Physics volume 12, pages 306–310 (2016)

Dynamic induction of superconductivity

Mitrano,M.*etal. Nature* **530,**461(2016). Kennes,D., et al, Nature Physics **14**, 1 (2017).

Driven Dirac Matter –

a platform for driven excitonic condensate

Collaboration with A Black-Schaffer, Bardarson, Bergholz, Bonetti, Tjernberg, Weissenrieder on dynamics of DM and STO

Transient excitonic instability in optically pumped DM

- Exciton: a bound state of electron and hole
- Excitonic instability: exiton binding energy $|E_B| > E_G \rightarrow$ ground state of an insulator becomes unstable \rightarrow collective state

Previous search for excitonic condensate:

- Spatially direct excitons (in semicond. or semimetal)
- Spatatially separated e-h systems:
 - semiconductor heterostructures [Lozovik, Yudson Zh. Eksp. Teor. Fiz. (1976)]
 - bilayer graphene [Eisenstein, MacDonald, Nat. Phys. (2004)]

Keldysh and Kopaev Sov. Phys.-Solid State (1965) Jerome, Rice, Kohn PR (1967); Halperin, Rice RMP(1968)

Many-body instability in driven DM

- Linear dispersion in $DM \rightarrow vanishing DOS$ at the node
- Critical coupling for many-body instabilities
- Dirac nodes are stable against interactions
- Basic idea: move the states away from the node e.g. by pumping

A. Pertsova

C. Triola, A. Pertsova, A.V. Balatsky Physical Review B 95 (20), 205410 (2017) K Sumida, et al Scientific reports 7 (1),14080 (2017) A Pertsova, AV Balatsky Physical Review B 97 (7), 075109 (2018)

Tunability of the critical coupling in a driven 2D Dirac material

Dimensionless coupling in DM:

$$\lambda \equiv \frac{E_C}{E_{kin}} = e^2 / \varepsilon \hbar v_F \rightarrow \text{critical } \lambda_c; \lambda_c \approx 1 \text{ in graphene}$$

Non-equilibrium drives a many-body instability

Experimental feasibility

In pumped TIs bulk states are involved.

Sinding energy (eV) band (S Dirac poir 0.4 Bulk valence band (BVB) -0.05 0 0.05 k (1/Å) -0.1 0.1

21 eV 1.6 eV

G

Gigantic lifetime $\tau \geq \mu s$? ٠

t<0

t

t<0

t=0

13

t

Pumped Dirac Materials: Theory

- Excitonic instability can be realized in pumped 2D DM: excitonic gap ~ 10meV in valley-pumped graphene [Triola *et al.*, PRB 95, 205410 (2017)]
- Here we study excitonic instability in pumped 3D DMs (Dirac and Weyl semimetals treated on equal footing)

Excitonic phases in pumped 3D DM

Dynamics of the order parameter

Semiconductor Bloch equations (SBE) for pumped 2D DM

occupations $n_{k}^{e} = \left\langle a_{k}^{\dagger}a_{k} \right\rangle$ $n_{-k}^{h} = \left\langle b_{-k}^{\dagger}b_{-k} \right\rangle$ $f_{k} = \left\langle a_{k}^{\dagger}b_{-k}^{\dagger} \right\rangle$ $\Delta_{k}^{*} = -\sum V_{k-k'} \left\langle a_{k'}^{\dagger}b_{-k'}^{\dagger} \right\rangle$ interband polarization/cohérence

$$\begin{cases} \frac{dn_k^e}{dt} = i\Delta_k^* f_k^* - i\Delta_k f_k + \frac{dn_k^e}{dt}|_{scat}, \\ \frac{dn_{-k}^h}{dt} = i\Delta_k^* f_k^* - i\Delta_k f_k + \frac{dn_k^h}{dt}|_{scat}, \\ \frac{df_k}{dt} = i(\varepsilon_k^e + \varepsilon_k^h)f_k + i\Delta_k^*(1 - n_k^e - n_{-k}^h) + \frac{df_k}{dt}|_{scat} \end{cases}$$

 \rightarrow dynamics of $f_k(t)$, order parameter $\Delta(t)$

Refs:

Haug, Kohn, "Quantum theory of optical and electronic properties of semiconductors" Malic et al. PRB 84, 205406 (2011); Goldstein et al. PRB 91, 054517 (2015)

scattering terms: $-\frac{n_k^e(t) - n_{\rm F}(\mu^e(t))}{T_1'}$ $n_k^e(t)$ $\frac{dt}{dt} |_{scat} =$ intraband relaxation interband relaxation (recombination) $s_{cat} =$ dephasing $(T \sim \Gamma^{-1})$ $1/T_2 = 1/T_1 + 1/T_1'$ 19

 $\frac{d\langle 0\rangle}{d} = i\langle [H, 0] \rangle + scat.$

Dynamics of the order parameter

Lifetime of the transient excitonic state is controlled by the lifetime of the non-equilibrium e and h distributions.

Time-evolution of the gap Δ_k and electron occupation n_k^e at $k = k_F$. Parameters for graphene with $\alpha \approx 1$ and $\mu = 200$ meV.

Experimental feasibility 3D DM (Dirac/Weyl)

Size of the gap and T_c is controlled by:

- Coupling α
- Energy scale on which 3D Dirac cones exist (Λ)
- Dirac cone degeneracy

Estimates for a for a hypothetical 3D DM with different *g*, assuming cut-off energy scale of 1eV and single-valley pumping

_	System	α	Λ (eV)	T_c (K)	$\Delta_{\rm max} \ ({\rm meV})$
	$Cd_3As_2 DSM$	0.1	1	0.1	0.03
	TaAs WSM	1	0.2	2	0.3
	3D DM $g = 1$	1 - 3	1	1 - 20	0.3 - 3
	3D DM $g = 2$	1 - 3	1	10 - 60	1 - 10
	3D DM $q = 4$	1 - 3	1	1 - 2	0.1 - 0.3

Large gaps (10meV) and $T_{\rm c}$ (~100K) could be achieved in new materials.

C. Triola, A. Pertsova, A.V. Balatsky Physical Review B 95 (20), 205410 (2017)

K Sumida, et al Scientific reports 7 (1), 14080 (2017)

A Pertsova, AV Balatsky Physical Review B 97 (7), 075109 (2018)

Dynamically Induced Excitonic Instability in Pumped Dirac MaterialsA Pertsova, AV Balatsky Annalen der Physik 532 (2), 1900549 (2020) Possible X observation Y. Hou et al Nature Communications, 10, 5723 (2019). 10.1038/s41467-019-13711-3

Emergence of excitonic superfluid at topological-insulator surfaces

Yasen Hou¹, Rui Wang², Rui Xiao¹, Luke McClintock¹, Henry Clark Travaglini¹, John P. Francia¹, Harry Fetsch³, Onur Erten⁴, Sergey Y. Savrasov¹, Baigeng Wang⁵, Antonio Rossi¹ Inna Vishik¹, Eli Rotenberg⁶ & Dong Yu^{1*}

• Dirac Materials

• Dynamics in Dirac Materials 1: Dynamic Exciton instability in DM

Dynamics in Dirac materials
2: Axial Magnetoelectric
Effect in DM

Conclusion

Dynamic Multiferroic: Axial Magnetoelectric Effect

Floating Weyl nodes ~ axial gauge field Example: Sound generates magnetization in Cd3As2

Long Liang, P. O. Sukhachov, and A. V. Balatsky, arxiv dec 2020, PRL (2021)

Dynamic in DM 2: Axial ME effect in Dirac materials

• Inverse Faraday effect IFE: photon torque -> dc M

 $M \sim E_{\omega} \wedge E_{\omega}^*$

- New Axial gauge fields in DM: $H = \sigma(k \eta A_{5(r,t)})$ $\mathbf{E}_5 = -\partial_t A^5$
- Axial Magnetoelectric effect: axial gauge field (e.g. phonon) torque -> DC M

$$M \sim E_{\omega}^5 \wedge E_{\omega}^{*5}$$

Axial Magnetoelectric Effect in Dirac semimetals L Liang, PO Sukhachov, AV Balatsky, Phys. Rev. Lett. 126, 247202 (2021) arXiv:2012.07888

Time-dependent

$\langle A(t) \otimes B(t') \rangle \neq 0 - Dynamic MF -$

Dirac equation

• Weyl fermions (1929)

$$egin{aligned} H_{ ext{Weyl}} = \left[egin{aligned} oldsymbol{\sigma} \cdot (\mathbf{k} - \mathbf{b}) + b_0 & 0 \ 0 & -oldsymbol{\sigma} \cdot (\mathbf{k} + \mathbf{b}) - b_0 \ (i\gamma^\mu \partial_\mu - egin{aligned} eta_\mu \gamma^\mu \gamma^5)\psi = 0 \ \end{pmatrix} \end{aligned}$$

Positions of the Weyl points in energy-momentum space, axial 'gauge potential'

$$\mathbf{E}_5 = \partial_t \mathbf{b} - \nabla b_0$$

$$\mathbf{B}_5 =
abla imes \mathbf{b}$$

Dirac equation

• The Dirac equation is invariant under time reversal (T), inversion (I or P), and charge conjugation (C) symmetry

Peskin and Schroeder

- Current is odd under C, while axial current is even
- » Nonzero chemical potential breaks C

Axial gauge fields in Dirac semimetals

• Space/time dependent Weyl nodes ~ axial gauge fields

Ilan, Grushin and Pikulin, Nat. Rev. Phys. 2, 29 (2020)

Axial gauge fields in Dirac semimetals

• Manipulating Weyl nodes by light pulses

Light pulses induce structural changes in WTe₂ Sie et al., Nature **565**, 61 (2019)

Inverse Faraday effect

• Heuristic explanation

$$m\ddot{\mathbf{r}} = -e\mathbf{E}(t) \quad \mathbf{E}(t) = E(\cos\omega t, \sin\omega t)$$

Static orbital magnetization $\mathbf{M} \propto \mathbf{r} \times \dot{\mathbf{r}} \propto \frac{\mathbf{E}_{\omega} \times \mathbf{E}_{\omega}^*}{\omega^3}$ Dynamical multiferroicity $\mathbf{M} \propto \mathbf{P} \times \partial_t \mathbf{P}$ Juraschek, Fechner, Balatsky, and Spaldin,

PRMaterials 1, 014401 (2017)

- Semiclassical theory, e.g., Pitaevskii, JETP 1960 Applies only to dissipationless materials
- Quantum theory, e.g., Battiato et al. PRB 2014, PRL 2016 Suitable for ab-initio calcualtions

Inverse Faraday effect in Dirac semimetals

IFE in graphene, chemical is 0.2eV Tokman et al. PRB **101**, 174429 (2020) Topological IFE in magnetic Weyl semimetals Gao, Wang, and Xiao, arXiv: 2009.13392

Inverse Faraday effect in Dirac semimetals

helicity dependent photocurrent in Bi-based Dirac semimetals Kawaguchi et al. arXiv: 2009.01388

Magnetoelectric effect

• Coupling between electric and magnetic fields in matter

See e.g. Manfred Fiebig, J. Phys. D: Appl. Phys. **38** (2005) R123 $F(\vec{E}, \vec{H}) = F_0 - P_i^S E_i - M_i^S H_i$ $-\frac{1}{2} \epsilon_0 \epsilon_{ij} E_i E_j - \frac{1}{2} \mu_0 \mu_{ij} H_i H_j - \alpha_{ij} E_i H_j$ $-\frac{1}{2} \beta_{ijk} E_i H_j H_k - \frac{1}{2} \gamma_{ijk} H_i E_j E_k - \cdots$ $M_i(\vec{E}, \vec{H}) = M_i^S + \mu_0 \mu_{ij} H_j + \alpha_{ij} E_i$ $+ \beta_{ijk} E_i H_j + \frac{1}{2} \gamma_{ijk} E_j E_k - \cdots$ breaking
Linear magnetoelectric effect (ME) T and I breaking, topological ME in 3D topological insulators, Qi, Hughes, and Zhang, PRB, 2008

> Inverse Faraday effect, not forbidden by I and T T breaking by circularly polarized light, $\mathbf{E} \times \mathbf{E}^*$ Proposed by Pitaevskii, JETP **12**, 1008 (1960)

Axial magnetoelectric effect

$$M_i = \alpha_{5,ij} E_{5,j} + \beta_{5,ijk} E_{5,j} B_{5,j} + \frac{1}{2} \gamma_{5,ijk} E_{5,j} E_{5,k}$$

	\mathbf{E}	Β	\mathbf{E}_5	\mathbf{B}_5
Т	1	-1	1	-1
Ι	-1	1	1	-1

Axial magnetoelectric effect

$$\mathbf{M} = -\lim_{B \to 0} \frac{\partial \mathcal{S}_{\text{eff}}}{\partial \mathbf{B}}$$
$$e^{iS_{\text{eff}}} = \int \mathbf{D}\bar{\psi}\mathbf{D}\psi e^{i\int d^4x \mathcal{L}}, \ \mathcal{L} = \bar{\psi}(i\partial_{\mu} - A_{\mu} - A_{5,\mu}\gamma^5)\gamma^{\mu}\psi$$

SS m

$$S_{\rm eff} \sim \int \langle j^{\mu} j_{5}^{\nu} j_{5}^{\rho} \rangle A_{\mu} A_{5,\nu} A_{5,\rho} \qquad \begin{array}{c} j^{\mu} = \bar{\psi} \gamma^{\mu} \psi & \text{changes sign under C} \\ j_{5}^{\mu} = \bar{\psi} \gamma^{\mu} \gamma^{5} \psi & \text{unchanged under C} \end{array}$$

Triangle diagram, not to be confused with the diagrams giving the chiral anomaly

- Vanishes charge neutral point, Fermi surface effect
- Can be calculated separately for each node (IFE in the q=0 limit)
- Other effects such as photo/acoustogalvanic effect, Sukhachov and Rostami, PRL 2020

Dirac semimetal Cd₂As₃

Z. K. Liu et al., Nat. Mater. **13**, 677 (2014) Large Fermi velocity, high mobility, long life time

Axial magnetoelectric effect in strained Cd₂As₃

Transverse sound wave propagating in z direction

$$\mathbf{u} = \operatorname{Re} \left[u_0 (\mathbf{e}_x - i\mathbf{e}_y) e^{i(q_z z - \omega t)} \right]$$
$$\mathbf{A}_5 = i(\mathbf{e}_x - i\mathbf{e}_y) \frac{b\beta u_0}{4e} q_z e^{i(q_z z - \omega t)} + \text{c.c.},$$

Transverse sound velocity $v_s = 1.6 \times 10^3 \text{m/s}$

- Key differences between IFE and AME $A_5 \propto q_z \propto \omega, E_5 \propto \omega^2$

 $\omega \ll v_F q_z$: momentum dependence can't be ignored

Axial magnetoelectric effect in strained Cd₂As₃

μ is fixed to be 0.2eV (μτ~3 for τ=0.01ps) For τ=1ps and ω=1GHz, μ₀M_z≈1μG

 $q_z v_z \tau \ll 1 \text{ limit}$ $M_z \approx M_0 \left[1 - \frac{3}{5} (q_z v_z \tau)^2 \right] \mu \omega \tau^2 \propto \omega$ $q_z v_z \tau \gg 1 \text{ limit}$ $M_z \approx 3M_0 \frac{1}{(q_z v_z \tau)^2} \left[1 - \frac{\pi}{2(q_z v_z \tau)} \right] \mu \omega \tau^2 \propto 1/\omega$ $M_0 = \frac{e v_x v_y (\beta b u_0 q_z)^2}{48\pi^2 v_z} \propto I$

 $I=10W/cm^2$ is the sound intensity, $u_0=0.2nm$ when $\omega=1GHz$

Axial magnetoelectric effect in strained Cd₂As₃

 $\times 10^{-7}$ 2 $\mu_0 M_z$ (Gauss) 1.5 1 0.5 10 8 0 80 6 60 40 $\mu(\text{meV})$ 20 2 0 $\omega(\text{GHz})$

т=1ps

	small ω	large ω	
IFE	$\propto 1/\omega$	$\propto 1/\omega^3$	
AME	$\propto \omega$	$\propto 1/\omega$	

Two peaks at $\omega \tau \propto v_x / v_z, \ q_z v_z = 2\mu$

Conclusion Dynamic 2

- Nodal states due to topology- new ground to probe dynamics
- Proposed transient exciton instability in DM
- Axial Magnetoelectric effect time dependent synthetic gauge fieds in nodal material
- Effect is on the scale of
- Dynamic 3: Dark Matter Dynamics and Quantum Sensors